首页> 外文OA文献 >Hand gesture segmentation in uncontrolled environments with partition matrix and a spotting scheme based on hidden conditional random field
【2h】

Hand gesture segmentation in uncontrolled environments with partition matrix and a spotting scheme based on hidden conditional random field

机译:带有分割矩阵和基于隐藏条件随机场的识别方案的非受控环境中的手势分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hand gesture segmentation is the task of interpreting and spotting meaningful hand gestures from continuous hand gesture sequences with non-sign transitional hand movements. In real world scenarios, challenges from the unconstrained environments can largely affect the performance of gesture segmentation. In this paper, we propose a gesture spotting scheme which can detect and monitor all eligible hand candidates in the scene, and evaluate their movement trajectories with a novel method called Partition Matrix based on Hidden Conditional Random Fields. Our experimental results demonstrate that the proposed method can spot meaningful hand gestures from continuous gesture stream with 2-4 people randomly moving around in an uncontrolled background.
机译:手势分割是从连续的手势序列(具有非符号过渡手势)中解释和发现有意义的手势的任务。在现实世界中,不受限制的环境带来的挑战会在很大程度上影响手势分割的性能。在本文中,我们提出了一种手势发现方案,该方案可以检测和监视场景中所有合格的手候选者,并使用一种基于隐藏条件随机场的新型分区矩阵方法来评估其运动轨迹。我们的实验结果表明,该方法可以从连续的手势流中发现有意义的手势,其中2-4个人在不受控制的背景下随机移动。

著录项

  • 作者

    Yao, Yi; Li, Chang-Tsun;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号